SUPER RIGID SET # TILE ADHESIVE FOR WALL & FLOOR APPLICATIONS. Chemwatch: **5351-68** Version No: **6.1.1.1** Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 #### Chemwatch Hazard Alert Code: 4 Issue Date: 24/11/2020 Print Date: 26/11/2020 L.GHS.NZL.EN #### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | |-----------------------------------|---| | Product name | Cemix Super Rigid Set | | Chemical Name | Not Applicable | | Synonyms | Not Available | | Chemical formula | Not Applicable | | Other means of identification | Not Available | | | | | Relevant identified uses of the | substance or mixture and uses advised against | | Relevant identified uses | Use according to manufacturer's directions. | | | | | Details of the supplier of the sa | afety data sheet | | Registered company name | Cemix (a part of Ardex NZ) | | Address | 19 Alfred Street Onehunga Auckland 1061 New Zealand | | Telephone | +64 9 636 1000 | | Fax | +64 9 636 0000 | | Website | www.cemix.co.nz | | Email | Not Available | | | | | Emergency telephone number | | | Association / Organisation | Cemix (a part of Ardex NZ) | | Emergency telephone numbers | 0800 ASK CEMIX | | Other emergency telephone numbers | Not Available | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Not regulated for transport of Dangerous Goods. | Classification ^[1] | Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1, Serious Eye Damage Category 1, Carcinogenicity Category 1, Specific target organ toxicity - single exposure Category 1, Specific target organ toxicity - repeated exposure Category 1 | |---|---| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | Determined by Chemwatch using GHS/HSNO criteria | 6.3A, 8.3A, 6.5B (contact), 6.7A, 6.9A | #### Label elements Hazard pictogram(s) Signal word Dange Chemwatch: **5351-68**Version No: **6.1.1.1** Page 2 of 11 #### **Cemix Super Rigid Set** Issue Date: **24/11/2020**Print Date: **26/11/2020** | H315 | Causes skin irritation. | |------|---| | H317 | May cause an allergic skin reaction. | | H318 | Causes serious eye damage. | | H350 | May cause cancer. | | H370 | Causes damage to organs. | | H372 | Causes damage to organs through prolonged or repeated exposure. | #### Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P260 | Do not breathe dust/fume. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P270 | Do not eat, drink or smoke when using this product. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P308+P311 | IF exposed or concerned: Call a POISON CENTER/doctor/physician/first aider. | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | P321 | Specific treatment (see advice on this label). | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | #### Precautionary statement(s) Storage P405 Store locked up. #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |------------|-----------|------------------------------| | 14808-60-7 | >60 | silica crystalline - quartz | | 65997-15-1 | 30-60 | portland cement | | 9032-42-2 | <1 | methylhydroxyethyl cellulose | | 1302-78-9 | <1 | bentonite | #### **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If dust is inhaled, remove from contaminated area. Encourage patient to blow nose to ensure clear passage of breathing. If irritation or discomfort persists seek medical attention. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. Chemwatch: 5351-68 Version No: 6.1.1.1 # Page 3 of 11 Cemix Super Rigid Set Issue Date: 24/11/2020 Print Date: 26/11/2020 For acute or short term repeated exposures to iron and its derivatives: - Always treat symptoms rather than history. - In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg. - Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin. - Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur. - Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension. - Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination. - Activated charcoal does not effectively bind iron. - Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea. - Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology] - Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur. - Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive. - Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml. - ▶ Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium. [Ellenhorn and Barceloux: Medical Toxicology] For acute or short-term repeated exposures to highly alkaline materials: - ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. #### Alkalis continue to cause damage after exposure. INGESTION: Milk and water are the preferred diluents No more than 2 glasses of
water should be given to an adult. - Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. - Supportive care involves the following Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] #### **SECTION 5 Firefighting measures** #### Extinguishing media - There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. #### Special hazards arising from the substrate or mixture Fire Incompatibility None known. | Advice for firefighters | | | | |-------------------------|--|--|--| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. | | | | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. Decomposes on heating and produces: silicon dioxide (SiO2) metal oxides May emit poisonous fumes. May emit corrosive fumes. | | | **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up ► Clean up all spills immediately. Avoid breathing dust and contact with skin and eyes Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. - Minor Spills - ► Sweep up, shovel up or - Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). - Place spilled material in clean, dry, sealable, labelled container. Issue Date: 24/11/2020 Print Date: 26/11/2020 **Major Spills** Moderate hazard - CAUTION: Advise personnel in area. - Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Safe handling - Porganic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Establish good housekeeping practices. - Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. - Other information - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities #### Suitable container Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag. NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer ### Storage incompatibility - WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively - The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. - Avoid reaction with borohydrides or cyanoborohydrides - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. - Avoid reaction with oxidising agents #### **SECTION 8 Exposure controls / personal protection** #### **Control parameters** #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|-----------------------------|---------------------------------|------------|---------------|---------------|------------------------| | New Zealand Workplace
Exposure Standards (WES) | silica crystalline - quartz | Quartz respirable dust | 0.05 mg/m3 | Not Available | Not Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | portland cement | Portland cement | 3 mg/m3 | Not Available | Not Available | dsen-Dermal sensitiser | | New Zealand Workplace
Exposure Standards (WES) | portland cement | Portland cement respirable dust | 1 mg/m3 | Not Available | Not Available | dsen-Dermal sensitiser | #### **Emergency Limits** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------|---|-------------|----------|-----------| | silica crystalline - quartz | Silica, crystalline-quartz; (Silicon dioxide) | 0.075 mg/m3 | 33 mg/m3 | 200 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |------------------------------|---------------------|---------------| | silica crystalline - quartz | 25 mg/m3 / 50 mg/m3 | Not Available | | portland cement | 5,000 mg/m3 | Not Available | | methylhydroxyethyl cellulose | Not Available | Not Available | | bentonite | Not Available | Not Available | ## **Occupational Exposure Banding** | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |--------------|-----------------------------------|-----------------------------------| | IIIgieuleiit | Occupational Exposure Danu Nating | Occupational Exposure Danu Ellill | #### Notes: Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. Issue Date: 24/11/2020 Print Date: 26/11/2020 | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |------------|--|----------------------------------| | bentonite | E | ≤ 0.01 mg/m³ | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### MATERIAL DATA #### **Exposure controls** #### Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and
ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. #### Personal protection # Eye and face protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. #### Skin protection #### See Hand protection below #### NOTE: - F The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. #### Hands/feet protection Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. ▶ Neoprene rubber gloves Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene. - nitrile rubber. - butyl rubber. - fluorocaoutchouc - polyvinyl chloride. # **Body protection** # See Other protection below #### Other protection - Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - ► Eye wash unit. #### Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1
- | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. Issue Date: 24/11/2020 Page 6 of 11 Print Date: 26/11/2020 #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Solid; partially soluble in water. | | | |--|------------------------------------|---|----------------| | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Applicable | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Applicable | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** #### Information on toxicological effects The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function. The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of #### Ingestion Inhaled corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Skin Contact Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts. Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the
material and ensure that any external damage is suitably protected. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Chemwatch: **5351-68**Page **7** of **11**Version No: **6.1.1.1** Cemix Super Rigid Set Issue Date: **24/11/2020**Print Date: **26/11/2020** On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Chronic Danger of serious damage to health by prolonged exposure. Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis. Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO]. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. | | TOXICITY | IRRITATION | | |------------------------------|---|---------------------------------|--| | Cemix Super Ezybond | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | | 0.3 mg/kg ^[2] | Not Available | | | silica crystalline - quartz | 50 mg/kg ^[2] | | | | | Oral (rat) LD50: =500 mg/kg ^[2] | | | | | TOXICITY | IRRITATION | | | portland cement | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | methylhydroxyethyl cellulose | Oral (rat) LD50: >2000 mg/kg ^[2] | Eye (rabbit): non-irritating * | | | | | Skin (rabbit): non-irritating * | | | | TOXICITY | IRRITATION | | | bentonite | Oral (cat) LD50: >1.25 mg/kg ^[2] | Not Available | | | | Oral (rat) LD50: >5000 mg/kg ^[2] | | | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | #### SILICA CRYSTALLINE -QUARTZ The International Agency for Research on Cancer (IARC) has classified occupational exposures to **respirable** (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease. WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours. * Millions of particles per cubic foot (based on impinger samples counted by light field techniques). NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles. #### PORTLAND CEMENT The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact contact allergies quickly manifest trienselves as contact eczenia, more rarely as utilicaria or quinker's bedefinit. The partitiogenesis of contact eczenia involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. # METHYLHYDROXYETHYL CELLULOSE * Clariant Australia #### for bentonite clays: Bentonite (CAS No. 1302-78-9) consists of a group of clays formed by crystallisation of vitreous volcanic ashes that were deposited in water. The expected acute oral toxicity of bentonite in humans is very low (LD50>15 g/kg). However, severe anterior segment inflammation, uveitis and retrocorneal abscess from eye exposure were reported when bentonite had been used as a prophypaste. #### BENTONITE In a 33 day dietary (2 and 6%) and a 90 day dietary (1, 3 and 5%) studies in chickens, no changes in behaviour, overall state, clinical and biochemical parameters and electrolytic composition of the blood. Repeat dietary administration of bentonite did not affect calcium or phosphorus metabolism. However, larger amounts caused decreased growth, muscle weakness, and death with marked changes in both calcium and phosphorus metabolism. Bentonite did not cause fibrosis after 1 year exposure of 60 mg dust (<5 um) in a rat study. However, in a second rat study, where 5 um particles were intratracheally instilled at 5, 15 and 45 mg/rat, dose-related fibrosis was observed. Bentonite clay dust is believed to be responsible for bronchial asthma in workers at a processing plant in USA. Ingestion of bentonite without adequate liquids may result in intestinal obstruction in humans. Hypokalaemia and microcytic iron-deficiency anaemia may occur in patients after repeat doses of clay. # PORTLAND CEMENT & BENTONITE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt Chemwatch: 5351-68 Version No: 6.1.1.1 #### Page 8 of 11 #### Cemix Super Rigid Set Issue Date: 24/11/2020 Print Date: 26/11/2020 onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. **PORTLAND CEMENT &** No significant acute toxicological data identified in literature search. **METHYLHYDROXYETHYL CELLULOSE & BENTONITE** | Acute Toxicity | × | Carcinogenicity | ✓ | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | ✓ | | Mutagenicity | × | Aspiration Hazard | × | Legend: — Data either not available or does not fill the criteria for classification 🥓 – Data available to make classification #### **SECTION 12 Ecological information** #### **Toxicity** | Cemix Super Ezybond | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------------------|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | silica crystalline - quartz | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | portland cement | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | nethylhydroxyethyl cellulose | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48 | Crustacea | >10-mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | 2-500mg/L | 2 | | bentonite | NOEC | 504 | Crustacea | 1-mg/L | 2 | | | EC50 | 48 | Crustacea | >100mg/L | 2 | | | EC50 | 72 |
Algae or other aquatic plants | >100mg/L | 2 | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data ### DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Ū | Persistence: Water/Soil | Persistence: Air | |------------|---|---------------------------------------|---------------------------------------| | | | No Data available for all ingredients | No Data available for all ingredients | #### Bioaccumulative potential | Ingredient | Bioaccumulation | | |------------|---------------------------------------|--| | | No Data available for all ingredients | | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 Disposal considerations** #### Waste treatment methods DO NOT allow wash water from cleaning or process equipment to enter drains. Product / Packaging disposal It may be necessary to collect all wash water for treatment before disposal. Issue Date: **24/11/2020**Print Date: **26/11/2020** - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance. Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately. #### **SECTION 14 Transport information** #### Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|---| | HSR002531 | Cleaning Products (Toxic [6.7]) Group Standard 2017 | | HSR002596 | Laboratory Chemicals and Reagent Kits Group Standard 2017 | | HSR002607 | Lubricants (Toxic [6.7]) Group Standard 2017 | | HSR002586 | Fuel Additives (Toxic [6.7]) Group Standard 2017 | | HSR002520 | Aerosols (Toxic [6.7]) Group Standard 2017 | | HSR002646 | Polymers (Toxic [6.7]) Group Standard 2017 | | HSR002616 | Metal Industry Products (Toxic [6.7]) Group Standard 2017 | | HSR002512 | Additives, Process Chemicals and Raw Materials (Toxic [6.7]) Group Standard 2017 | | HSR002568 | Embalming Chemicals (Toxic [6.7]) Group Standard 2017 | | HSR002679 | Surface Coatings and Colourants (Toxic [6.7]) Group Standard 2017 | | HSR100425 | Pharmaceutical Active Ingredients Group Standard 2017 | | HSR002601 | Leather and Textile Products (Toxic [6.7]) Group Standard 2017 | | HSR002648 | Refining Catalysts Group Standard 2017 | | HSR002545 | Construction Products (Toxic [6.7A]) Group Standard 2017 | | HSR002551 | Corrosion Inhibitors (Toxic [6.7]) Group Standard 2017 | | HSR100757 | Veterinary Medicine (Limited Pack Size, Finished Dose) Standard 2017 | | HSR100758 | Veterinary Medicines (Non-dispersive Closed System Application) Group Standard 2017 | | HSR100759 | Veterinary Medicines (Non-dispersive Open System Application) Group Standard 2017 | | HSR002655 | Solvents (Toxic [6.7]) Group Standard 2017 | | HSR002625 | N.O.S. (Toxic [6.1, 6.7]) Group Standard 2017 | | HSR002639 | Photographic Chemicals (Toxic [6.7]) Group Standard 2017 | | HSR002560 | Dental Products (Toxic [6.7]) Group Standard 2017 | | HSR002687 | Water Treatment Chemicals (Toxic [6.7]) Group Standard 2017 | #### silica crystalline - quartz is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1 : Carcinogenic to humans New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### portland cement is found on the following regulatory lists New Zealand Inventory of Chemicals (NZIoC) Issue Date: **24/11/2020**Print Date: **26/11/2020** New Zealand Workplace Exposure Standards (WES) #### methylhydroxyethyl cellulose is found on the following regulatory lists New Zealand Inventory of Chemicals (NZIoC) #### bentonite is found on the following regulatory lists New Zealand Inventory of Chemicals (NZIoC) #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantities | |----------------|----------------| | Not Applicable | Not Applicable | #### **Certified Handler** Version No: 6.1.1.1 Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |--------------|--------------------------------------|------------|------------|--| | 6.5A or 6.5B | 120 | 1 | 3 | | #### **Tracking Requirements** Not Applicable #### **National Inventory Status** | National Inventory | Status | | | | |--|---|--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | | Canada - DSL | Yes | | | | | Canada - NDSL | No (silica crystalline - quartz; portland cement; methylhydroxyethyl cellulose; bentonite) | | | | | China - IECSC | Yes | | | | | Europe - EINEC / ELINCS / NLP | No (methylhydroxyethyl cellulose) | | | | | Japan - ENCS | No (portland cement; bentonite) | | | | | Korea - KECI | Yes | | | | | New Zealand - NZIoC | Yes | | | | | Philippines - PICCS | No (portland cement) | | | | | USA - TSCA | Yes | | | | | Taiwan - TCSI | Yes | | | | | Mexico - INSQ | No (methylhydroxyethyl cellulose) | | | | | Vietnam - NCI | Yes | | | | | Russia - ARIPS | Yes | | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | | | ### **SECTION 16 Other information** | Revision Date | 24/11/2020 | |---------------|------------| | Initial Date | 30/04/2019 | #### **SDS Version Summary** | Version | Issue Date | Sections Updated | | |---------|------------|---|--| | 5.1.1.1 | 05/11/2020 | Chronic Health, Classification | | | 6.1.1.1 | 24/11/2020 | Chronic Health, Classification, Ingredients | | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** Chemwatch: 5351-68 Page 11 of 11 Issue Date: 24/11/2020 Version No: 6.1.1.1 Print Date: 26/11/2020 #### **Cemix Super Rigid Set** PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor
NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.